Search results for "In vivo microscopy"
showing 4 items of 4 documents
Examination Technique of Confocal Laser Endomicroscopy
2007
The first publication about a confocal fluorescence microscope integrated into the distal tip of a conventional colonoscope (Pentax EC 3830FK, Tokyo, Japan) appeared in 2004 [1], showing that in vivo microscopy at subcellular resolution (0.7 µm) simultaneously displayed with white-light endoscopy had become possible. Today, endomicroscopy can be performed in the upper and lower GI tract [2]–[10]. This chapter deals with the examination technique of confocal laser endomicroscopy.
Confocal laser endomicroscopy for gastrointestinal diseases.
2008
Confocal laser endomicroscopy enables in vivo microscopy of the mucosal layer of the gastrointestinal tract with subcellular resolution during ongoing endoscopy. Endomicroscopy opens the door to immediate tissue and vessel analysis. Different types of diseases can be diagnosed with optical surface and subsurface analysis. Analysis of the in vivo microarchitecture can be used for targeting biopsies to relevant areas, and subsurface imaging can unmask microscopic diseases or bacterial infection. Molecular imaging is becoming feasible, which will enable new indications in gastrointestinal endoscopy. This article reviews the current and rapidly expanding clinical data on endomicroscopy and give…
Advances in confocal laser endomicroscopy for the diagnosis of gastrointestinal diseases
2009
Confocal laser endomicroscopy (CLE) is a novel technique enabling in vivo microscopy of the human gastrointestinal mucosa. Cellular details even below the tissue surface can be visualized at high resolution during ongoing endoscopy.This review summarizes the current clinical data on the use of CLE in different disease states and discusses a perspective for future clinical and scientific application of CLE.Review on published literature and meeting abstracts.Confocal laser endomicroscopy covers a growing field of indications in both upper and lower gastrointestinal endoscopy and beyond. It has been shown to reliably predict the presence of neoplastic lesions and inflammatory changes of the g…
Advanced fluorescence microscopy for in vivo imaging of neuronal activity
2019
Brain function emerges from the coordinated activity, over time, of large neuronal populations placed in different brain regions. Understanding the relationships of these specific areas and disentangling the contributions of individual neurons to overall function remain central goals for neuroscience. In this scenario, fluorescence microscopy has been proved as the tool of choice for in vivo recording of brain activity. Optical advances combined with genetically encoded indicators allow a large flexibility in terms of spatiotemporal resolution and field of view while keeping invasiveness in living animals to a minimum. Here we describe the latest advancements in the field of linear and nonl…